概要: 1、 2、 教学手段:根据本节课的特点,要在正、余弦函数的图象的基础上操作性质,所以有条件的话不防可用动画的形式表现,给学生一种直观形象,不仅激发了学生的创造性思维能力,更起到了事半功倍的效果。 四、教学过程: 1、 复习导入: 通过复习已学过的正、余弦函数的图象,不妨叫学生自己作图,这样不仅复习了上节课的五点作图法,还可以引出新课,正、余弦函数的性质www.67jx.com 2、 新课 a: 打出多媒体课件,不妨叫学生自己观察正、余弦函数的图象,定义域和值域,最大值,最小值,学生应该都能观察出来,只须稍微强调一下。 b:周期函数的定义:可有诱导公式sin( x+2k∏ )=sinx 得出函数值是按一定的规律重复取的,给出定义,讲解定义时,要特别强调“作零常数t”,及&ldqu
余弦函数的性质说课稿,标签:初一数学说课稿,初中数学说课视频,http://www.67jx.com1、
2、
教学手段:根据本节课的特点,要在正、余弦函数的图象的基础上操作性质,所以有条件的话不防可用动画的形式表现,给学生一种直观形象,不仅激发了学生的创造性思维能力,更起到了事半功倍的效果。
四、教学过程:
1、 复习导入:
通过复习已学过的正、余弦函数的图象,不妨叫学生自己作图,这样不仅复习了上节课的五点作图法,还可以引出新课,正、余弦函数的性质
www.67jx.com2、 新课
a: 打出多媒体课件,不妨叫学生自己观察正、余弦函数的图象,定义域和值域,最大值,最小值,学生应该都能观察出来,只须稍微强调一下。
b:周期函数的定义:可有诱导公式sin( x+2k∏ )=sinx
得出函数值是按一定的规律重复取的,给出定义,讲解定义时,要特别强调“作零常数t”,及“对于定义域的每一值,都要有f(x+t)=f(x)成立,也就是说,如果在定义域内的每一个值使得f(x+t)=f(x)成立。非零常数t就是周期了,不妨举一个例子,
是否正弦函数的周期,
sin(∏/2+x)是否等于sin(x)
还应强调并不是所有的函数都会有最小正周期。
c:奇偶性: 在讲解定义时,应该强调,在判断函数是否为奇偶函数时,必须先看其定义域是否关于原点对称,后再由f(x)=f(-x)
或f(-x)=-f(x),也就是说,定义域关于原点对称,一个函数有奇偶性的必要条件,还应强调并不是所有的函数都有奇偶性,但也有函数既是奇函数,也是偶函数。可以举例说明:
奇函数一定关于原点对称,偶函数一定关于y轴对称。反之也成立。
d:在讲解周期性、奇偶性、单调性时可有多媒体课件实现。
(1)、对称轴:y=sinx 的对称轴是x=k∏+∏/2;